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Virial expansion for ionic mixtures: Point-counterion model
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A binary mixture of hard-sphere polyions and monovalent point counterions is studied using the virial
expansion (VEX) of the Ornstein-Zernike equation. The zero-order VEX term, which coincides with the
symmetrized Poisson-Boltzmann equation (SPB), exhibits an attraction among polyions at sufficiently
high temperatures and densities where the VEX convergence is fast. The linear VEX term intensifies
this effect that may be explained using the suggestion that polyions interact via a screened potential of
Jukawa type. A general solution of the linearized SPB (LSPB) is not represented by a single Debye-
Hiickel exponent and also exhibits an attraction. Within the SPB applicability region the LSPB and SPB

provide similar results.

PACS number(s): 61.20.—p

I. INTRODUCTION

The classical description of the infinitely diluted ionic
mixtures is based on the Debye-Hiickel (DH) approach
[1,2]. In this theory, the dimensionless electrical poten-
tial ¢,,=ez,¥,/kT around an ion of species a is deter-
mined by the Poisson equation

A¢aa= _K(Z)zkaﬁgaﬁ ’ (1)
B

where e is the elementary charge, z,, is the valency of ion
a, kT is the temperature in energetic units, the distance is
measured in units of R, ko=[47ne?R2I /(ekT)]'/? is the
Debye parameter, n =3 ,n, is the total concentration of
charged species in a mixture, the summation is performed
over @=1,2,...,M ion species, I =3 v,z2 is the di-
mensionless ionic strength, v,=n,/n, € is the dielectric
constant of a solvent, and A,z=z,zz/I. The pair-
correlation functions g, that characterize the distribu-
tion of ions of species 3 around the central ion « have the
Boltzmann form

gaB= exp( _Zﬁ¢aa/za) . @)

The combination of (1) and (2) provides the nonlinear
Poisson-Boltzmann (PB) equation which does not have an
analytical solution.

For a binary mixture of hard spheres with equal diame-
ters R and charges =Ze in a solvent with the same dielec-
tric constant [so-called restricted primitive model (RPM)
[3]], the solution of the linearized PB (DH) equation is
given by

_ X,Z?
B 1+k,

Yoo exp[ —ko(r —1)]/7, (3)
where X,=e2/(ekTR) is the Bjerrum parameter. Obvi-
ously, the DH theory describes an attraction among op-
posite charges (g,3>1) and repulsion (g,, <1) among
equally charged ions.

The PB solution does not satisfy the Onsager identity

47

8ap=88a 4)

in the case of unequal sizes or valencies of ions [2]. If the
ions have unequal sizes, DH theory also violates (4).
Therefore unsymmetrical ionic mixtures are generally
studied using the different closures of the Ornstein-
Zernike (OZ) equation (see for references [4]).

In principle, the theoretical analysis of mixtures can be
performed using the diagram-ordering technique [5]
which leads to the conclusion that the asymptotic corre-
lations may have a non-DH form in the general case [6].
Another approach is based on the OZ viral expansion
(VEX) [7]. Its zero-order term coincides with the sym-
metrized Poisson-Boltzmann (SPB) equation, which was
introduced by Feat and Levine in order to preserve the
condition (4) [8]. The linear VEX term outlines the re-
gion of the SPB applicability [9]. For RPM, SPB coin-
cides with PB but in contrast to the latter it always
satisfies (4). VEX convergence for RPM has been sys-
tematically examined in [10]. The analysis of different
electrolyte and plasma models [9-11] shows that VEX
rapidly converges if Xyl <5. It should be noted that
I=2Z? for RPM while I =Z for Z:1 mixtures. The SPB
accuracy in the parameter region related to the water
electrolytes (X,=1.7) was studied in [12,13]. In particu-
lar, the SPB results are close to that of the OZ
hypernetted-chain (HNC) closure at ky<1 and x;<0.2
for 1:2 and 1:3 valent mixtures, respectively [9].

SPB exhibits a possibility of an attraction among po-
lyions in electrolyte solutions [14—17]. This effect was
forecasted by Oosawa [18]. An attraction in a binary
mixture of hard-sphere polyions and point counterions
[point-counterion model (PCM)] was noticed in computer
simulations [19]. Recently this effect was demonstrated
using HNC closure [20] for a mixture of polyions and a
binary electrolyte with parameters similar to those in
[16,17]. In this communication, we outline the region of
the SPB applicability for PCM with the linear VEX term
that allows to avoid possible SPB artifacts regarding the
attraction phenomenon. The VEX theory is given in Sec.
IT and its results for PCM are presented in Sec. III. A
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semianalytic solution of the linearized SPB (LSPB),
which also exhibits an attraction, is discussed in Sec. IV.

II. VIRIAL EXPANSION FOR COULOMB FLUIDS

The conventional form of the OZ equation is given by

(3]
hag=Captn 3 v, [ Cop(ra g, (rg )dr, (5)
14

where h,,=g,5—1 is the total correlation function. If
one presents g, in the form
8ap=VapXP(Wyg), Vap= expl—dyp) , (6)

where ¢, is a pair potential in kT units, then the direct
correlation function ¢4 equals

CaBZhaﬂ_waﬂ+Baﬁ s (7

where B,z is the bridge functional that represents an
infinite series of integrals whose integrands are the prod-
ucts of the total correlation functions multiplied by in-
creasing powers of the concentration starting with n?
[21]. In HNC approximation, the bridge functional is
neglected. The combination of (5) and (7) provides

waﬁzpzVyf(hay_way)hﬁrdr7+0(P2) ’ (8)
%

where distance is measured in units of R, p=nR 3 is the
dimensionless density, and all terms having factors p* or
higher powers of the density are denoted by O(pz).
Equation (8) can be symmetrized using the identity
wa=0.5(w,s+wg,). Then

w,=0.5p 3 v,,f[(hay—way g,
¥

+(hg, —wp, g, Mdr, +0(p?) . (9)

In ionic systems, the pair potential consists of the
Coulomb [¢gﬁ=eza23/(6kTr)] and short-range [¢§,3]

- —4C
components. In terms of W, g=w,;—dg5 Eq. (9) ac-
quires the form

Wop=—1apt0.50 v, [[(hyy— Wy hp,
Y

+(hg, —Wg,)h,, ldr,
+0(p?), (10)

where

¢a3=¢gﬁ+o_5p2Vyf(hayqsgy—f-hﬂycﬁgy)dry . (11)
¥

Applying the Laplacian operator to Eq. (11), one obtains

A= —X2,258(r)—0.5k0 3 v, (Ao hg, +Ag hy,)
14

(12)

where 6(r) is the Dirac function that plays a role of a
boundary condition and will be omitted further. Owing
to the electroneutrality condition ¥ ,n,z,=3,v,A,, =0,
Eq. (12) for o= has the form
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that coincides with the Poisson equation (1) postulated in
the DH theory. It is clear from (12) that

&4,@

hew gy | (14)

Yop=0.5A 45

Thus the number of the independent equations in (12)
coincides with the number of charged species in a mix-
ture M and the functions 1, are the dimensionless elec-
tric potentials around ions a.

The charge density around an ion a of radius R,
differs from zero at distance larger than the sum of R,
and the radius of the smallest ion present in a mixture,
ie.,atr >R, where

R, =ming[R,+Rg] . (15)

Therefore the Gauss electrostatic law leads to the bound-
ary condition

dy
2 aa
’ dr

The Poisson equation (13) should also satisfy the bound-
ary condition at infinity,

Yop( ©)=0 . 17

The system of equations (10),(13)—(17) is equivalent to the
original OZ equation (5).

The idea of VEX [10] is to expand all OZ variables in
the series of the dimensionless density powers:

Wa/J’: EpkW(aI;;?)’ tﬁaz/j': Epklbizkﬂ) ’
k k

—_ 2
- XOZa

for r=R,,, . (16)

(18)
ha[3= Epkhiz];;7 8ap™ %pkgixkﬁ) ’
k

while the Debye parameter « is supposed to be indepen-
dent of p. The latter condition is necessary in order to
preserve the Debye-type decay already in a zero-order
term that ensures the convergence of the thermodynami-
cal integrals. It should be noted that the DH exponent
(3) already contains all powers of k,~#!/2 and the Debye
length L, ~x; ! tends to infinity if n—0. Therefore an
“honest” VEX for the correlation functions of the
Coulomb systems diverges [22]. After substitution of (18)
into (6) and (10), the zero VEX term acquires the form

WR ==y, g9 =v.pexp(—¢) . (19)
In turn, the substitution of (19) into Eq. (13) leads to the
SPB equation

A= —Kk3 3, Vyhay¥ oy Xp(—92) . (20

The analogous procedure provides the linear VEX term

1) — 1
giz[f‘)—W(/jz ’

Qj

(21)
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For the linear and higher-order VEX terms, the bound-
ary condition (16) is reduced to

dr 2 =0 for r=R,,
The zero and linear VEX terms of the OZ and HNC ap-
proximation coincidence while the quadratic VEX term
of OZ involves the bridge functional absent in HNC ap-
proximation. The quadratic VEX term for RPM was es-
timated in [10].

and kK >0 . (23)

III. ZERO AND LINEAR VEX TERMS FOR PCM

Let us consider a mixture of hard-sphere polyions (p)
of radius R and valency Z and monovalent point coun-
terions (c¢). If distance is measured in units of R, then

0 forr<2
Yer = |1 forr>2,
0 forr<l1
Yoe ™ |1 for r>1 , (24)
Ve =1,
and SPD (20) has the form
0, r=1
(0) — K(ZJZ (0)y <<
w7 11 X lexp(—v,’), 1=r=2
exp(— (0))— exp(— ;,?,)), r=2,
(25)
A K(2) ™ —exp(—¢), r<1
v T Z+1 exp( ¢pc —exp(—¢?), r>1.

The results of the calculations are given in Table I where
ggﬁ is the LSPB solution, g,z= ga)+pg 1. The dimen-
sionless pressure equals

—_P _ 0 (n
= =p'+
p=xr P pp
ZZg(O)(1)+g(OJ(2)
= l pc
1+ 3 +2p Z 1 (26)
The specific electrostatic energy in units of

kT u =u'©+pu'? is calculated using the expression [21]

dYaq
p—2c

u-—OSEv hm ar

dr (27)

PCM is determined by the three dimensionless parame-
ters Xy, kg, and Z. For RPM, which is defined with two
parameters (X,Z2 and k,), the parameter region of the
SPB applicability has a bell shape [10] because of the
slow convergence either at high values of X,Z? or high
densities p=0.25«3/(X,Z?) Similar  convergence
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TABLE I. Thermodynamical data for PCM.

g,ﬁ,‘f)(Z) gp(2) gpLC(l) g,ﬁ?)(l) 8pc(1) p® p
X,=0.1, Z=1

01 096 09 100 109 109 111 100 101

025 099 099 123 106 107 111 1.00 1.08

X,=0.1, Z=2

01 085 085 08 125 120 120 1.00 1.00
025 091 091 097 112 117 120 099 1.02
05 101 101 128 111 113 125 099 1.02

X,=0.1, Z=3

025 077 077 079 156 127 128 099 1.00
05 091 091 099 124 122 127 098 1.04
1.0 120 119 175 131 117 139 097 1.19

X,=1, Z=1
025 074 075 075 2.19 220 220 097 098
075 097 097 111 166 1.67 173 092 1.06
1.0 107 107 137 147 150 163 090 1.14

X,=1, Z=2

0.5 043 044 042 371 374 378 089 0.93
1.0 072 075 072 266 267 264 089 093
1.5 100 107 110 240 216 2.11 079 1.04
20 136 137 167 162 184 181 076 1.17

X,=2, Z=1
05 068 070 071 3.67 365 3.64 088 093
1.0 093 096 103 243 249 248 0.82 099
125 104 107 122 208 217 218 080 1.05

Ko gpl;,(Z)

behavior, though complicated by the independent param-
eters X, and Z, appears for PCM. It is clear, however,
that at least in the region 1<X,Z?<4 and k,<1, the
VEX convergence is fast and the PCM thermodynamics
is determined basically by SPB theory.

The SPB values of g[‘,g) (2) increase with rise of «, and
become more than unity at sufficiently high densities, i.e.,
they exhibit an attraction. The linear VEX term
intensifies this effect. Since the parameter X,Z? plays a
role of the polyion dimensionless inverse temperature
[11], an attraction among ions of the same charge appears
at high temperatures and high densities where the short-
range potentials dominate over the electrostatic interac-
tions. In particular, HNC approximation shows such an
attraction at very high densities (k> 3) and high temper-
atures (X,Z*=1.7) even for RPM [23]. The mechanism
of this effect was suggested in [14]. Namely, the screen-
ing of the charges is carried out at distance,
Lp~ky 1~ =172 while the average distance among ions,
Lg, is about n —173 At sufficiently high densities,
Lg > L, and ions interact via fully screened electrical po-
tential. This potential having the Jukawa form similar to
(3) can provide an effective attraction [24] as well as any
other short-range repulsion (e.g., the hard-sphere pair po-
tential [25]). Obviously, such screening is performed more
effectively by the “small” counterions approaching the
polyions at short distance (1 <r <2 for PCM), which is
inaccessible for other polyions.

One may suggest that an attraction between two plates
immersed in an electrolyte, which was observed in com-
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TABLE II. General LSPB solution for PCM.

r 12 2
r<i A +X,Z/r 1+ A,exp(—ar)/r +(Xo— A, )explar)/r
1<r=<2 > B;8;exp(Bir)/r —Z(Z +2) 1+ Y Biexp(B;r)/r

r>2 C,Z%xp(—kor)/r +C,Z exp(—ar)/r

Cexp(—«or)/r —Crexp(—ar)/r

a=ky,/V?2, i=1-4, B1,3=0.5ko{[(3+Z)£[(3+Z)* 8]} 2 N(Z +1), B,= =By, Bs=—Bs, 8;=2Z(Z +1)B2/k3—Z(Z +2)

puter simulations [26,27], represents the similar effect for
the limit case of the polyions of infinite size. Also, the
theory [28] can exhibit an attraction between the charged
walls in an electrolyte [29].

Examples of the pair-correlation functions for PCM
without (a) and with (b) attraction polyions are given in
Fig. 1.

\\ (@)

1.5

1.0

0.5

(b)

0.5

0 1 2 3 4 T

FIG. 1. Pair-correlation functions of PCM at X,=1 and
Z =2 calculated with the zero and linear VEX terms. (a)
ko=0.5, (b) kg=1.0; 1: g,,(r), 2: g, (r), 3: g..(r).

IV. LINEAR SPB (LSPB) SOLUTION FOR PCM

Retaining only linear terms in the expansion of ex-
ponents in SPB (20) [exp( —t/Jﬁz%))’: 1 -—1/1%)], one obtains a
LSPB solution for PCM,

K2 7 O, r<1
A1/)1=Zb3_1 140.5(,/Z +Z,), 1<r<2
(140.5/Z)¢,+0.5Z4p,, r>2,
(28)
K% 1&2"—1, r=<1
A= T X (140.52)9,+0.5¢,/Z, r>1,

where ¢, = },g’ and ¥,=9¢?. A general LSPB solution for
a binary mixture with finite ion sizes was obtained in
[11,13]. A general LSPB solution for PCM is presented
in Table II. For r =2, it contains two exponents. One of
them is similar to the DH expression (3) and another one
exhibits an attraction if C, =0.

The partial solution of the LSPB can be obtained using
the continuity conditions of the functions ¥; and dv,; /dr
for i =1,2 at distances » =1 and r =2, i.e., via a system
of eight linear algebraic equations. The coefficients of the
partial LSPB solution for PCM were obtained by the nu-
merical solution of the mentioned algebraic equations
and are listed in the Table III.

At small densities (k3 <0.1), C;~X, and C, <<C, [cf.
with (3)]. At high temperatures (X,Z?~ 1), there is al-
ways an attractive component in the polyion interactions

TABLE III. The coefficients of the LSPB partial solution for
PCM.

kk A, A, B, B, B, B, C, c,

X,=0.1, Z=1

0.1 —0.02 7.17 1.10 —0.98 —15.7 157  0.10 —0.01
0.25 —0.05 2.90 041 —028 —6.21 —6.18 0.07 —0.04
05 —0.15 1.44 0.17 000 —299 296 —0.05 —0.19
1.0 —0.39 0.67 005 029 —133 127 —0.93 —1.01

X,=1, Z=1

0.1 —0.09 823 1.07 0.14 —15.6 154  1.00 —0.00
025 —0.22 393 039 0.84 —6.13 591 100 —0.02
0.5 —041 243 0.17 115 —294 272 097 —0.11
1.0 —0.76 1.62 005 156 —1.31 104 041 —0.78

X,=1, Z=2
0.1 —0.35 823 053 0.82 —20.1 197 101 0.0
0.5 —126 2.44 008 137 —3.82 346 112 003
0.85 —1.82 1.79 0.04 1.60 —2.15 178 122 —0.03
1.0 —204 1.64 003 171 —180 141 121 —O0.11




3280

since C, <0. Moreover, even C, becomes less than zero
with increase of density, i.e., polyion interactions acquire
a “pure” attractive character.

At lower temperatures (see data for X,=1, Z =2),
C, <0 only at rather high values of x,. Positive values of
C, mean an attraction among point counterions that is
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presumably an artifact of the linear theory. Since
C, << C, in the parameter region considered, this effect is
apparent only at very long distance where the potentials
Y; are close to zero. Therefore the non-DH term plays a
negligible role within the region of the LSPB applicability
where LSPB and SPB provide similar results.
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